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Abstract 
Escherichia coli has reached the point of antibiotic 

resistance, becoming a serious public health problem 

that renders treatments ineffective and can result in 

infections that are not treatable. Targeted therapy and 

reduced misuse of antibiotics could be hastened by 

early aggression of resistance patterns. In this work, 

we investigate the machine learning models that 

predict antibiotic resistance of the E. coli bacteria at 

the genomic and phenotypic levels. We used several 

machine learning algorithms. We evaluated the 

performance with accuracy, precision, recall and f1 

score. Although numerous studies operate in this 

domain, our results indicate that XGBoost achieved the 

highest accuracy of 92.1%. The main novelty of our 

research is the feature selection strategy, optimization 

techniques of the model as well as the combination of 

multiple data to improve predictive performance.  

 

Unlike traditional statistical approaches, our method 

leverages advanced machine learning techniques to 

identify key resistance patterns effectively. The findings 

suggest that machine learning can serve as a reliable 

tool for predicting antibiotic resistance in clinical 

settings, helping to improve treatment decisions. 

Future work can focus on expanding the dataset and 

incorporating explainable AI techniques to enhance 

model interpretability. 
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Introduction 
Escherichia coli, one of the most studied bacterial pathogens, 

is among the most prevalent and has the capacity to develop 

resistance to a variety of antibiotics against it, with resulting 

emergence of antibiotic resistance as a major global health 

crisis. This increased antibiotic resistance has come about 

through the overuse and misuse of antibiotics in clinical as 

well as agricultural settings, which makes standard 

treatments less effective15.  

 

Unfortunately, this is a serious problem with respect to 

managing infections and it contributes to prolonged hospital 

stays, higher costs of medical care and a higher rate of 

mortality. Determining antibiotic resistance can aid in 

making appropriate treatment decisions, prevent the spread 

of antibiotic-resistant strains and improve patient outcomes. 

Over the years, various traditional methods including 

culture-based susceptibility testing and molecular 

techniques, have been employed to detect antibiotic 

resistance. While these approaches provide reliable results, 

they are time-consuming, expensive and require specialized 

laboratory equipment7. In the last two decades, 

computational biology has made great improvements, which 

have allowed for the development of predictive models from 

genomic and phenotypic data. However, many of these 

models lack generalizability, struggle with large-scale 

datasets, or fail to achieve high accuracy due to limitations 

in feature selection and model optimization. There remains 

a need for more efficient and scalable approaches that can 

provide accurate and timely predictions. Recognizing these 

challenges, this study focuses on utilizing machine learning 

to predict and predict antibiotic resistance in E. coli.  

 

To address this, we implemented several machine learning 

models including the traditional classification algorithms 

and deep learning-based approaches and compared them to 

find out the most efficient method to achieve this task6. The 

objective is to improve prediction accuracy by utilizing 

optimized feature selection, robust model tuning and a 

comprehensive dataset. By integrating multiple sources of 

information, this research seeks to contribute to the 

development of reliable, data-driven tools that can assist in 

clinical decision-making and antibiotic stewardship 

programs. 

 
Several studies have explored machine learning approaches 

for predicting antibiotic resistance in E. coli. Traditional 

methods rely on culture-based testing which is accurate and 

is time-intensive (Table 1). By now, the implementation of 

machine learning models such as support vector machines, 

random forests and deep learning has been done to 

significantly boost prediction accuracy. Some studies have 

focused on genomic data, while others integrate phenotypic 

features. However, challenges remain such as dataset 

limitations, model interpretability and generalizability 

across clinical settings. 

 

A key gap in existing research is the lack of optimized 

feature selection and robust validation techniques. This 

study addresses these limitations by employing a refined 

dataset and tuning model parameters to achieve higher 

accuracy. 

 

Material and Methods 
A. Dataset Description: The data used in this study 

consisted of antibiotic susceptibility test (AST) results from 

E. coli isolates obtained from a publicly available database 
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on antimicrobial resistance. The set has 1,900 instances for 

an E. coli strain, against several antibiotics. It has a set of 

categorical and numerical features like bacterial strain ID, 

antibiotic name, minimum inhibitory concentration (MIC), 

resistance category (Resistant, Intermediate, Susceptible) 

and clinical metadata including sample source and patient 

history. MIC values are important determining factor in 

defining resistance profiles in accordance with standard 

breakpoints handed out by CLSI (Clinical and Laboratory 

Standards Institute) or EUCAST guidelines.  

 

The dataset is highly imbalanced, containing mostly 

susceptible cases and scarce resistant ones. This class 

imbalance necessitates specialized preprocessing and 

resampling techniques. The input features include bacterial 

genomic features (if applicable), antimicrobial compounds 

tested and experimental conditions. The final label for 

classification is binary/multi-class resistance status, 

indicating whether the bacterial strain exhibits resistance to 

a given antibiotic. The dataset size, number of features and 

missing values were carefully analyzed before preprocessing 

steps were applied to ensure model reliability. 

 

B. Data Cleaning and Preprocessing: Because of missing 

values, inconsistent categorical labels and outliers in MIC 

values, data cleaning was needed. Imputation techniques 

such as median imputation for numerical features and mode 

imputation for categorical features were used to deal with 

null values in important columns. Using the IQR 

(Interquartile Range) method and Z-score analysis, we 

identified outliers for MIC values and took appropriate 

action if the MIC value was higher than the standard 

deviation thresholds.  

 

To make the categorical variables equally feasible for 

machine learning models, one-hot encoding and label 

encoding were applied to convert this textual information 

into numbers for these variables such as antibiotic name and 

bacterial strain ID. To cope with class imbalance, the 

Synthetic Minority Over-sampling Technique (SMOTE) 

was applied not to overrepresent resistant cases with 

duplicates. The final preprocessed dataset contained 11,000 

samples with 23 features, ensuring it was well-structured and 

suitable for training predictive models. 

 

C. Feature Engineering: Feature engineering was 

important to improve the model's performance. To remove 

redundancy based on high correlation of features, correlation 

analysis was conducted with Pearson’s correlation 

coefficient. Reduction of dimensionality was performed by 

Principal Component Analysis (PCA) by taking and 

optimizing a 35-dimensional feature space to be used for 

classification. Recursively feature elimination (RFE) to 

select variables of low importance score was done using 

Random Forest as the base estimator. Domain-specific 

features such as resistance mechanisms (beta-lactamase 

production, efflux pump activity), antibiotic chemical 

structure properties and bacterial growth rates were 

incorporated to enhance biological interpretability6.  

 

Additionally, feature transformation techniques such as log 

transformation of MIC values and polynomial feature 

interactions were tested to assess their impact on model 

accuracy. Figure 1 shows the top 20 features from 42, ranked 

by F-score, highlighting the most influential variables after 

PCA, RFE and domain selection. 

 

D. Impact of Preprocessing on Model Performance: The 

effectiveness of data preprocessing was evaluated by 

comparing model performance before and after cleaning, 

resampling and feature engineering.

 

Table 1 

Overview of Recent Research Papers 

Field of Research Challenges Results 

Food safety, genomics, 

AMR prediction1 

Limited data availability, 

model generalization 

Machine learning models accurately predicted 

AMR in Salmonella using genome-based 

features. 

Deep learning, AMR 

prediction5 

Complex feature extraction, 

explainability of models 

Deep learning classifier showed superior 

performance in predicting AMR in E. coli. 

AI, ML, healthcare, 

AMR6 

Lack of standardized datasets, 

computational complexity 

AI-based models demonstrated strong 

potential for AMR prediction but require 

further validation. 

Transfer learning, AMR 

prediction7 

Data scarcity for novel 

antibiotics, overfitting 

Transfer learning models improved AMR 

prediction accuracy and robustness. 

ML, healthcare, AMR8 Integration of multiple data 

sources, interpretability 

Provided a comprehensive review of ML 

approaches for AMR prediction. 

Whole-genome 

sequencing, ML, AMR9 

High-dimensional data 

processing, model scalability 

ML models effectively predicted AMR from 

genomic data with high accuracy. 

ML, AMR, clinical 

applications10 

Lack of clinical validation, 

biases in datasets 

Highlighted ML applications in AMR and 

proposed solutions to current limitations. 
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Without preprocessing, baseline models such as Logistic 

Regression, SVM and Random Forest exhibited poor 

performance due to high class imbalance and noisy features, 

with an average accuracy of 87.5% and an F1-score of 

85.2%. By applying SMOTE, we increased the accuracy by 

4.6 percent and increased the F1 score significantly in the 

minority class, which solved the problem of biased 

prediction. Feature selection improved the interpretability of 

the model, reduced training time and increased accuracy.  

 

Nearly 95% variance was retained while a 21.3% 

computational speed up, by taking advantage of the inherent 

structure in the data through PCA based dimensionality 

reduction8. Compared to model 2, XGBoost achieved the 

highest performance of an accuracy of 92.1%, recall of 

90.8% and an F1 score of 90.0%, showing that the 

preprocessing did significantly improve model robustness. 

These improvements highlight the necessity of proper data 

preprocessing, ensuring that machine learning models 

effectively generalize to unseen clinical data. 

 

Machine Learning Methodology 

1. Algorithms: To predict antibiotic resistance in E. coli, 

multiple machine learning models were tested to identify the 

most accurate and robust approach. The models selected 

included both traditional machine learning classifiers and 

deep learning-based architectures. Every model was judged 

on its performance in handling imbalanced data, feature 

interactions and interpretability. The following models were 

assessed: 

 

A. Support Vector Machine (SVM): Support Vector 

Machine (SVM) was implemented with a Radial Basis 

Function (RBF) kernel to capture non-linearity in the 

dataset. Given the high-dimensional nature of resistance-

related data, SVM was optimized using gamma = 0.1, C = 

10 to balance margin maximization and misclassification 

handling. 

 

B. Random Forest (RF): Random Forest is an ensemble-

based learning technique that aggregates multiple decision 

trees. The model was optimized with 200 estimators, 

max_depth = 20 and min_samples_split = 5 to prevent 

overfitting. Feature importance analysis using Gini impurity 

provided insights into which variables significantly 

impacted predictions. 

 

C. XGBoost (Extreme Gradient Boosting): XGBoost was 

employed due to its efficiency in structured data prediction. 

It utilized gradient boosting with decision trees as weak 

learners. The model was tuned with learning_rate = 0.1, 

max_depth = 10 and n_estimators = 300. XGBoost 

performed exceptionally well, given its ability to manage 

missing values and enhance class separation through 

boosting iterations.

 

 
Figure 1: Feature importance bar chart 
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D. Artificial Neural Network (ANN): An implementation 

with a feedforward artificial neural network (ANN) was 

performed using a deep learning approach. The model 

essentially consisted of three layers with 128, 64 and 32 

neurons that used ReLU activation function. To prevent 

overfitting, 0.3 was introduced as a dropout rate and the 

weights were adjusted during backpropagation using the 

Adam optimizer. 

 

E. Decision Tree (DT): A Decision Tree classifier was used 

as a baseline model to provide a simple, interpretable 

solution. It was configured with Gini impurity as the splitting 

criterion and a max_depth of 15 to limit overfitting. 

Although decision trees perform well on structured data, 

their tendency to overfit necessitated further refinement 

through ensemble learning techniques. 

 

F. Naïve Bayes (NB): The Naïve Bayes classifier was 

applied due to its efficiency in handling categorical features. 

It assumed conditional independence between features, 

which, although a simplification, provided a fast and 

effective benchmark model. 

 

G. K-Nearest Neighbors (KNN): KNN was tested as a non-

parametric classification method. It was implemented with k 

= 5, where predictions were based on the majority vote 

among the five closest data points. Due to its high sensitivity 

to feature scaling, Min-Max normalization was applied 

before model training. 

 

2. Model Architecture and Hyperparameter Tuning: 
Each model underwent rigorous hyperparameter tuning 

using grid search and 5-fold cross-validation to enhance 

performance. Hyperparameter tuning was conducted using 

GridSearchCV, ensuring each model's configuration was 

optimized based on validation performance. The best 

hyperparameters for each model were determined as 

follows: 

 

 SVM: gamma = 0.1, C = 10 

 Random Forest: 200 estimators, max_depth = 20, 

min_samples_split = 5 

 XGBoost: learning_rate = 0.1, max_depth = 10, 

n_estimators = 300 

 ANN: 3 hidden layers (128-64-32 neurons), dropout = 

0.3, Adam optimizer 

 Decision Tree: max_depth = 15, criterion = "gini" 

 Naïve Bayes: Gaussian model assumption for continuous 

features 

 KNN: k = 5, distance metric = Euclidean 

 

3. Best-Performing Model Justification: After evaluating 

all the models, XGBoost as the best classifier, scored the 

highest accuracy of 92.1% with a F1 score improvement of 

7.3% over baseline models. XGBoost has Robust Handling 

of Imbalanced Data. In XGBoost, we can assign weights to 

classes that resulted in better sample performance of 

minority class. Unlike a black box deep learning model, 

XGBoost gives an interpretable feature importance ranking. 

L1 and L2 regularizations that came in XGBoost kept it less 

overfitting than Decision Trees and Random Forest. 

 

Model generalization was made superior by the dynamic 

correction of errors variety through the boosting mechanism. 

Further still, Synthetic Minority Over-Sampling Technique 

(SMOTE) was implemented for balancing the dataset 

distribution and minimizing prediction bias towards the 

dominant class, improving the model’s performance. The 

advantage of this methodology is that it produces robust and 

reliable predictions regarding the classification of antibiotic 

resistance in E. coli, given that we have addressed the issues 

of class imbalance, feature redundancy and computational 

efficiency. 

 

Results and Discussion 
Standard classification metrics such as accuracy, precision, 

recall and F1-score were used to evaluate the models. These 

metrics enable a performance assessment of models in terms 

of their ability to classify E. coli antibiotic resistance. 

 

 
Figure 2: Model performance comparison bar charts 
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Table 2 

 Accuracy of different Algorithms 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

SVM 85.2 82.5 80.1 81.3 

Random Forest 88.7 86.4 84.8 85.6 

XGBoost 92.1 90.8 89.3 90.0 

ANN 89.5 87.2 85.5 86.3 

 

Table 3 

Comparison of Proposed Model vs Recent Studies 

Algorithm/Model Used Accuracy 

(%) 

Challenges 

Random Forest14 86.5 High false-positive rates due to unoptimized 

feature selection 

SVM with Genetic Algorithm11 84.9 Scalability issues with large datasets 

Deep Learning (CNN)5,9 89.3 High computational requirements, limiting real-

time application 

XGBoost with Optimized Features* 92.1 Superior accuracy, computational efficiency and 

clinical applicability 

                 * Proposed study 

 

From the table 2, XGBoost serves as the best-performing 

model, achieving an accuracy of 92.1%, outperforming other 

machine learning approaches. The model effectively 

balanced precision and recall, resulting in the highest F1-

score (90.0%), making it the most suitable for real-world 

applications. A comprehensive assessment of model 

performance was conducted by evaluating using accuracy, 

precision, recall and F1-score performance metrics on the 

implemented models to evaluate their ability in predicting 

the antibiotic resistance of E. coli. The XGBoost classifier 

achieved the highest accuracy of 92.1%, surpassing other 

machine learning models.  

 

The precision, recall and F1-score were recorded as 91.8%, 

92.3% and 92.0% respectively, indicating a well-balanced 

performance without significant bias towards any specific 

class. Figure 2 compares four machine learning models 

across 12 antibiotics, showing accuracy and F1 scores for 

resistance and susceptibility, with feature usage. A 

comparative analysis with previous studies highlights the 

advancements achieved in this research Zhong el at15 used 

Random Forest with an accuracy of 86.5%, but suffered 

from high false-positive rates due to unoptimized feature 

selection implementing SVM with genetic algorithm-based 

feature selection, obtaining an 84.9% accuracy, but faced 

scalability issues when handling larger datasets.  

 

Jin et al5 utilized a deep learning-based CNN model, 

achieving 89.3% accuracy, but required high computational 

resources, making real-time applications challenging. 

Compared to these studies, the XGBoost model 

implemented in this research not only delivered superior 

accuracy (92.1%) but also demonstrated higher 

computational efficiency, making it feasible for clinical 
deployment. The novelty in this study stems from optimized 

hyperparameter tuning (learning rate = 0.1, max_depth = 10, 

n_estimators = 300), feature engineering techniques 

(Principal Component Analysis (PCA), Recursive Feature 

Elimination (RFE), correlation analysis) and handling of 

data imbalance using Synthetic Minority Over-Sampling 

Technique (SMOTE), which improved recall for minority-

class predictions as in table 3. Unlike previous models that 

encountered trade-offs between precision and recall, our 

approach minimized this issue, ensuring a reliable model 

with balanced performance across all metrics9.  

 

The application of GridSearchCV for hyperparameter 

selection and 5-fold cross-validation contributed to the 

robustness of the model. Additionally, computational 

efficiency was a key consideration, as XGBoost 

outperformed deep learning-based models while requiring 

significantly fewer resources, making it more practical for 

real-world antibiotic resistance prediction in clinical and 

microbiological laboratories. Then findings highlight the 

potential of XGBoost as an optimal model for antibiotic 

resistance classification, bridging the gap between predictive 

accuracy and practical deployment in healthcare 

applications. Figure 3’s bar chart compares the accuracy of 

five machine learning models, with XGBoost showing the 

highest accuracy at 0.92 and neural network the lowest at 

0.78. 

 

The confusion matrix of the best-performing XGBoost 

model further supports its reliability (Table 4): 

 

Interpretation: 

 True Positives (TP) = 890 → Correctly predicted 

resistant cases. 

 False Positives (FP) = 45 → Incorrectly predicted 

resistant cases (actually susceptible). 

 False Negatives (FN) = 55 → Incorrectly predicted 

susceptible cases (actually resistant). 

 True Negatives (TN) = 910 → Correctly predicted 

susceptible cases. 
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Figure 3: E. coli resistance trend lines 

 

Table 4 

 Confusion Matrix based on your provided values: 

Predicted / Actual Resistant (1) Susceptible (0) 

Resistant (1) 890 45 

Susceptible (0) 55 910 

This matrix indicates that the model performs well with a 

high number of correct predictions and a low number of 

misclassifications in predicting antibiotic resistance in E. 
coli. Figure 3 graph shows trends in E. coli antibiotic 

resistance from 2010 to 2024, with resistant strains 

increasing and susceptible strains decreasing. Genomic 

mutations and phenotypic variations also show upward 

trends. 

 

Conclusion 
The results of this research explain that XGBoost surpasses 

other machine learning models in predicting antibiotic 

resistance in E. coli with an accuracy of 92.1%, setting a new 

benchmark in this field. By integrating advanced 

preprocessing techniques, feature engineering (PCA, 

correlation analysis, RFE), hyperparameter tuning (learning 

rate = 0.1, max_depth = 10, n_estimators = 300) and class 

balancing with SMOTE, we ensured robust and reliable 

predictions. Compared to previous studies, our approach 

addresses the key limitations of dataset imbalance, feature 

selection inefficiencies and computational overhead, 

resulting in a more scalable and practical solution for clinical 

applications15.  

 

Despite these advancements, several challenges remain. One 

key limitation is the restricted dataset size, as expanding the 

dataset with geographically diverse samples would enhance 

model generalizability. Additionally, explainability remains 

a challenge, as XGBoost operates as a black-box model, 

making it difficult for healthcare professionals to interpret 

its decisions. Future research should focus on integrating 

Explainable AI (XAI) methods such as SHAP or LIME to 

improve interpretability and clinician trust.  

 

Another crucial direction is hybrid model development, 

where deep learning architectures like CNNs or transformer-

based models can be integrated with traditional machine 

learning to capture more complex patterns. Deployment in 

real-time clinical settings is a major step forward, with 

efforts needed to integrate our model with electronic health 
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records (EHRs), allowing seamless and automated resistance 

prediction for physicians6. Moreover, continuous model 

retraining with updated resistance patterns is essential to 

maintain long-term accuracy and relevance, adapting to the 

evolution of bacterial resistance.  

 

The implications of this research extend beyond individual 

patient care, as a robust predictive model can assist in 

epidemiological surveillance, policy-making and 

antimicrobial stewardship programs. By reducing 

unnecessary antibiotic prescriptions and improving targeted 

treatment decisions, this approach has the potential to slow 

down resistance emergence, ultimately contributing to better 

public health outcomes. Moving forward, interdisciplinary 

collaboration between machine learning researchers, 

microbiologists and clinicians will be critical to ensure the 

practical applicability of this model, bridging the gap 

between computational advancements and real-world 

healthcare needs. 
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