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Abstract

Escherichia coli has reached the point of antibiotic
resistance, becoming a serious public health problem
that renders treatments ineffective and can result in
infections that are not treatable. Targeted therapy and
reduced misuse of antibiotics could be hastened by
early aggression of resistance patterns. In this work,
we investigate the machine learning models that
predict antibiotic resistance of the E. coli bacteria at
the genomic and phenotypic levels. We used several
machine learning algorithms. We evaluated the
performance with accuracy, precision, recall and f1
score. Although numerous studies operate in this
domain, our results indicate that XGBoost achieved the
highest accuracy of 92.1%. The main novelty of our
research is the feature selection strategy, optimization
techniques of the model as well as the combination of
multiple data to improve predictive performance.

Unlike traditional statistical approaches, our method
leverages advanced machine learning techniques to
identify key resistance patterns effectively. The findings
suggest that machine learning can serve as a reliable
tool for predicting antibiotic resistance in clinical
settings, helping to improve treatment decisions.
Future work can focus on expanding the dataset and
incorporating explainable Al techniques to enhance
model interpretability.

Keyword: E. coli, Genomic prediction, XGBoost, Artificial
intelligence, Antibiotic resistance.

Introduction

Escherichia coli, one of the most studied bacterial pathogens,
is among the most prevalent and has the capacity to develop
resistance to a variety of antibiotics against it, with resulting
emergence of antibiotic resistance as a major global health
crisis. This increased antibiotic resistance has come about
through the overuse and misuse of antibiotics in clinical as
well as agricultural settings, which makes standard
treatments less effective?®.

Unfortunately, this is a serious problem with respect to
managing infections and it contributes to prolonged hospital
stays, higher costs of medical care and a higher rate of
mortality. Determining antibiotic resistance can aid in
making appropriate treatment decisions, prevent the spread
of antibiotic-resistant strains and improve patient outcomes.
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Over the years, various traditional methods including
culture-based  susceptibility testing and molecular
techniques, have been employed to detect antibiotic
resistance. While these approaches provide reliable results,
they are time-consuming, expensive and require specialized
laboratory equipment’. In the last two decades,
computational biology has made great improvements, which
have allowed for the development of predictive models from
genomic and phenotypic data. However, many of these
models lack generalizability, struggle with large-scale
datasets, or fail to achieve high accuracy due to limitations
in feature selection and model optimization. There remains
a need for more efficient and scalable approaches that can
provide accurate and timely predictions. Recognizing these
challenges, this study focuses on utilizing machine learning
to predict and predict antibiotic resistance in E. coli.

To address this, we implemented several machine learning
models including the traditional classification algorithms
and deep learning-based approaches and compared them to
find out the most efficient method to achieve this task®. The
objective is to improve prediction accuracy by utilizing
optimized feature selection, robust model tuning and a
comprehensive dataset. By integrating multiple sources of
information, this research seeks to contribute to the
development of reliable, data-driven tools that can assist in
clinical decision-making and antibiotic stewardship
programs.

Several studies have explored machine learning approaches
for predicting antibiotic resistance in E. coli. Traditional
methods rely on culture-based testing which is accurate and
is time-intensive (Table 1). By now, the implementation of
machine learning models such as support vector machines,
random forests and deep learning has been done to
significantly boost prediction accuracy. Some studies have
focused on genomic data, while others integrate phenotypic
features. However, challenges remain such as dataset
limitations, model interpretability and generalizability
across clinical settings.

A Kkey gap in existing research is the lack of optimized
feature selection and robust validation techniques. This
study addresses these limitations by employing a refined
dataset and tuning model parameters to achieve higher
accuracy.

Material and Methods

A. Dataset Description: The data used in this study
consisted of antibiotic susceptibility test (AST) results from
E. coli isolates obtained from a publicly available database
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on antimicrobial resistance. The set has 1,900 instances for
an E. coli strain, against several antibiotics. It has a set of
categorical and numerical features like bacterial strain ID,
antibiotic name, minimum inhibitory concentration (MIC),
resistance category (Resistant, Intermediate, Susceptible)
and clinical metadata including sample source and patient
history. MIC values are important determining factor in
defining resistance profiles in accordance with standard
breakpoints handed out by CLSI (Clinical and Laboratory
Standards Institute) or EUCAST guidelines.

The dataset is highly imbalanced, containing mostly
susceptible cases and scarce resistant ones. This class
imbalance necessitates specialized preprocessing and
resampling techniques. The input features include bacterial
genomic features (if applicable), antimicrobial compounds
tested and experimental conditions. The final label for
classification is binary/multi-class resistance status,
indicating whether the bacterial strain exhibits resistance to
a given antibiotic. The dataset size, number of features and
missing values were carefully analyzed before preprocessing
steps were applied to ensure model reliability.

B. Data Cleaning and Preprocessing: Because of missing
values, inconsistent categorical labels and outliers in MIC
values, data cleaning was needed. Imputation techniques
such as median imputation for numerical features and mode
imputation for categorical features were used to deal with
null values in important columns. Using the IQR
(Interquartile Range) method and Z-score analysis, we
identified outliers for MIC values and took appropriate
action if the MIC value was higher than the standard
deviation thresholds.

To make the categorical variables equally feasible for
machine learning models, one-hot encoding and label
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encoding were applied to convert this textual information
into numbers for these variables such as antibiotic name and
bacterial strain ID. To cope with class imbalance, the
Synthetic Minority Over-sampling Technique (SMOTE)
was applied not to overrepresent resistant cases with
duplicates. The final preprocessed dataset contained 11,000
samples with 23 features, ensuring it was well-structured and
suitable for training predictive models.

C. Feature Engineering: Feature engineering was
important to improve the model's performance. To remove
redundancy based on high correlation of features, correlation
analysis was conducted with Pearson’s correlation
coefficient. Reduction of dimensionality was performed by
Principal Component Analysis (PCA) by taking and
optimizing a 35-dimensional feature space to be used for
classification. Recursively feature elimination (RFE) to
select variables of low importance score was done using
Random Forest as the base estimator. Domain-specific
features such as resistance mechanisms (beta-lactamase
production, efflux pump activity), antibiotic chemical
structure properties and bacterial growth rates were
incorporated to enhance biological interpretability®.

Additionally, feature transformation techniques such as log
transformation of MIC values and polynomial feature
interactions were tested to assess their impact on model
accuracy. Figure 1 shows the top 20 features from 42, ranked
by F-score, highlighting the most influential variables after
PCA, RFE and domain selection.

D. Impact of Preprocessing on Model Performance: The
effectiveness of data preprocessing was evaluated by
comparing model performance before and after cleaning,
resampling and feature engineering.

Table 1
Overview of Recent Research Papers
Field of Research Challenges Results
Food safety, genomics, | Limited data availability, | Machine learning models accurately predicted

AMR prediction!

model generalization

AMR in Salmonella using genome-based
features.

Deep learning, AMR | Complex feature extraction, | Deep learning classifier showed superior
prediction® explainability of models performance in predicting AMR in E. coli.

Al, ML, healthcare, | Lack of standardized datasets, | Al-based models demonstrated strong
AMRS computational complexity potential for AMR prediction but require

further validation.

Transfer learning, AMR
prediction’

Data scarcity for novel

antibiotics, overfitting

Transfer learning models improved AMR
prediction accuracy and robustness.

ML, healthcare, AMRS

Integration of multiple data
sources, interpretability

Provided a comprehensive review of ML
approaches for AMR prediction.

Whole-genome
sequencing, ML, AMR?®

High-dimensional data
processing, model scalability

ML models effectively predicted AMR from
genomic data with high accuracy.

ML, AMR,
applications!©

clinical

Lack of clinical
biases in datasets

validation,

Highlighted ML applications in AMR and
proposed solutions to current limitations.
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Without preprocessing, baseline models such as Logistic
Regression, SVM and Random Forest exhibited poor
performance due to high class imbalance and noisy features,
with an average accuracy of 87.5% and an Fl-score of
85.2%. By applying SMOTE, we increased the accuracy by
4.6 percent and increased the F1 score significantly in the
minority class, which solved the problem of biased
prediction. Feature selection improved the interpretability of
the model, reduced training time and increased accuracy.

Nearly 95% variance was retained while a 21.3%
computational speed up, by taking advantage of the inherent
structure in the data through PCA based dimensionality
reduction®. Compared to model 2, XGBoost achieved the
highest performance of an accuracy of 92.1%, recall of
90.8% and an F1 score of 90.0%, showing that the
preprocessing did significantly improve model robustness.
These improvements highlight the necessity of proper data
preprocessing, ensuring that machine learning models
effectively generalize to unseen clinical data.

Machine Learning Methodology

1. Algorithms: To predict antibiotic resistance in E. coli,
multiple machine learning models were tested to identify the
most accurate and robust approach. The models selected
included both traditional machine learning classifiers and
deep learning-based architectures. Every model was judged
on its performance in handling imbalanced data, feature
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interactions and interpretability. The following models were
assessed:

A. Support Vector Machine (SVM): Support Vector
Machine (SVM) was implemented with a Radial Basis
Function (RBF) kernel to capture non-linearity in the
dataset. Given the high-dimensional nature of resistance-
related data, SVM was optimized using gamma = 0.1, C =
10 to balance margin maximization and misclassification
handling.

B. Random Forest (RF): Random Forest is an ensemble-
based learning technique that aggregates multiple decision
trees. The model was optimized with 200 estimators,
max_depth = 20 and min_samples_split = 5 to prevent
overfitting. Feature importance analysis using Gini impurity
provided insights into which variables significantly
impacted predictions.

C. XGBoost (Extreme Gradient Boosting): XGBoost was
employed due to its efficiency in structured data prediction.
It utilized gradient boosting with decision trees as weak
learners. The model was tuned with learning_rate = 0.1,
max_depth = 10 and n_estimators = 300. XGBoost
performed exceptionally well, given its ability to manage
missing values and enhance class separation through
boosting iterations.

Feature importance
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Figure 1: Feature importance bar chart
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D. Artificial Neural Network (ANN): An implementation
with a feedforward artificial neural network (ANN) was
performed using a deep learning approach. The model
essentially consisted of three layers with 128, 64 and 32
neurons that used ReLU activation function. To prevent
overfitting, 0.3 was introduced as a dropout rate and the
weights were adjusted during backpropagation using the
Adam optimizer.

E. Decision Tree (DT): A Decision Tree classifier was used
as a baseline model to provide a simple, interpretable
solution. It was configured with Gini impurity as the splitting
criterion and a max_depth of 15 to limit overfitting.
Although decision trees perform well on structured data,
their tendency to overfit necessitated further refinement
through ensemble learning techniques.

F. Naive Bayes (NB): The Naive Bayes classifier was
applied due to its efficiency in handling categorical features.
It assumed conditional independence between features,
which, although a simplification, provided a fast and
effective benchmark model.

G. K-Nearest Neighbors (KNN): KNN was tested as a non-
parametric classification method. It was implemented with k
= 5, where predictions were based on the majority vote
among the five closest data points. Due to its high sensitivity
to feature scaling, Min-Max normalization was applied
before model training.

2. Model Architecture and Hyperparameter Tuning:
Each model underwent rigorous hyperparameter tuning
using grid search and 5-fold cross-validation to enhance
performance. Hyperparameter tuning was conducted using
GridSearchCV, ensuring each model's configuration was
optimized based on validation performance. The best
hyperparameters for each model were determined as
follows:

e SVM:gamma=0.1,C=10
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e Random Forest: 200 estimators, max_depth = 20,
min_samples_split =5
e XGBoost: learning_rate = 0.1, max_depth = 10,

n_estimators = 300

e ANN: 3 hidden layers (128-64-32 neurons), dropout =
0.3, Adam optimizer

o Decision Tree: max_depth = 15, criterion = "gini"

¢ Naive Bayes: Gaussian model assumption for continuous
features

e KNN: k =5, distance metric = Euclidean

3. Best-Performing Model Justification: After evaluating
all the models, XGBoost as the best classifier, scored the
highest accuracy of 92.1% with a F1 score improvement of
7.3% over baseline models. XGBoost has Robust Handling
of Imbalanced Data. In XGBoost, we can assign weights to
classes that resulted in better sample performance of
minority class. Unlike a black box deep learning model,
XGBoost gives an interpretable feature importance ranking.
L1 and L2 regularizations that came in XGBoost kept it less
overfitting than Decision Trees and Random Forest.

Model generalization was made superior by the dynamic
correction of errors variety through the boosting mechanism.
Further still, Synthetic Minority Over-Sampling Technique
(SMOTE) was implemented for balancing the dataset
distribution and minimizing prediction bias towards the
dominant class, improving the model’s performance. The
advantage of this methodology is that it produces robust and
reliable predictions regarding the classification of antibiotic
resistance in E. coli, given that we have addressed the issues
of class imbalance, feature redundancy and computational
efficiency.

Results and Discussion

Standard classification metrics such as accuracy, precision,
recall and F1-score were used to evaluate the models. These
metrics enable a performance assessment of models in terms
of their ability to classify E. coli antibiotic resistance.
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Figure 2: Model performance comparison bar charts
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Table 2

Accuracy of different Algorithms
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Model Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%)
SVM 85.2 82.5 80.1 81.3
Random Forest 88.7 86.4 84.8 85.6
XGBoost 92.1 90.8 89.3 90.0
ANN 89.5 87.2 85.5 86.3
Table 3
Comparison of Proposed Model vs Recent Studies
Algorithm/Model Used Accuracy | Challenges
(%)
Random Forest4 86.5 High false-positive rates due to unoptimized
feature selection
SVM with Genetic Algorithm!? 84.9 Scalability issues with large datasets
Deep Learning (CNN)>° 89.3 High computational requirements, limiting real-
time application
XGBoost with Optimized Features* 92.1 Superior accuracy, computational efficiency and
clinical applicability

* Proposed study

From the table 2, XGBoost serves as the best-performing
model, achieving an accuracy of 92.1%, outperforming other
machine learning approaches. The model effectively
balanced precision and recall, resulting in the highest F1-
score (90.0%), making it the most suitable for real-world
applications. A comprehensive assessment of model
performance was conducted by evaluating using accuracy,
precision, recall and F1-score performance metrics on the
implemented models to evaluate their ability in predicting
the antibiotic resistance of E. coli. The XGBoost classifier
achieved the highest accuracy of 92.1%, surpassing other
machine learning models.

The precision, recall and F1-score were recorded as 91.8%,
92.3% and 92.0% respectively, indicating a well-balanced
performance without significant bias towards any specific
class. Figure 2 compares four machine learning models
across 12 antibiotics, showing accuracy and F1 scores for
resistance and susceptibility, with feature usage. A
comparative analysis with previous studies highlights the
advancements achieved in this research Zhong el at'® used
Random Forest with an accuracy of 86.5%, but suffered
from high false-positive rates due to unoptimized feature
selection implementing SVM with genetic algorithm-based
feature selection, obtaining an 84.9% accuracy, but faced
scalability issues when handling larger datasets.

Jin et al® utilized a deep learning-based CNN model,
achieving 89.3% accuracy, but required high computational
resources, making real-time applications challenging.
Compared to these studies, the XGBoost model
implemented in this research not only delivered superior
accuracy (92.1%) but also demonstrated higher
computational efficiency, making it feasible for clinical
deployment. The novelty in this study stems from optimized
hyperparameter tuning (learning rate = 0.1, max_depth = 10,
n_estimators = 300), feature engineering techniques
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(Principal Component Analysis (PCA), Recursive Feature
Elimination (RFE), correlation analysis) and handling of
data imbalance using Synthetic Minority Over-Sampling
Technique (SMOTE), which improved recall for minority-
class predictions as in table 3. Unlike previous models that
encountered trade-offs between precision and recall, our
approach minimized this issue, ensuring a reliable model
with balanced performance across all metrics®.

The application of GridSearchCV for hyperparameter
selection and 5-fold cross-validation contributed to the
robustness of the model. Additionally, computational
efficiency was a key consideration, as XGBoost
outperformed deep learning-based models while requiring
significantly fewer resources, making it more practical for
real-world antibiotic resistance prediction in clinical and
microbiological laboratories. Then findings highlight the
potential of XGBoost as an optimal model for antibiotic
resistance classification, bridging the gap between predictive
accuracy and practical deployment in healthcare
applications. Figure 3’s bar chart compares the accuracy of
five machine learning models, with XGBoost showing the
highest accuracy at 0.92 and neural network the lowest at
0.78.

The confusion matrix of the best-performing XGBoost
model further supports its reliability (Table 4):

Interpretation:

e True Positives (TP)
resistant cases.

e False Positives (FP) = 45 — Incorrectly predicted
resistant cases (actually susceptible).

e False Negatives (FN) = 55 — Incorrectly predicted
susceptible cases (actually resistant).

e True Negatives (TN) = 910 — Correctly predicted
susceptible cases.

890 — Correctly predicted
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Trends in Antibiotic Resistance in Escherichia coli (2010-2024)

Year

Figure 3: E. coli resistance trend lines

Table 4
Confusion Matrix based on your provided values:

Predicted / Actual | Resistant (1) | Susceptible (0)
Resistant (1) 890 45
Susceptible (0) 55 910
This matrix indicates that the model performs well with a selection inefficiencies and computational overhead,

high number of correct predictions and a low number of
misclassifications in predicting antibiotic resistance in E.
coli. Figure 3 graph shows trends in E. coli antibiotic
resistance from 2010 to 2024, with resistant strains
increasing and susceptible strains decreasing. Genomic
mutations and phenotypic variations also show upward
trends.

Conclusion

The results of this research explain that XGBoost surpasses
other machine learning models in predicting antibiotic
resistance in E. coli with an accuracy of 92.1%, setting a new
benchmark in this field. By integrating advanced
preprocessing techniques, feature engineering (PCA,
correlation analysis, RFE), hyperparameter tuning (learning
rate = 0.1, max_depth = 10, n_estimators = 300) and class
balancing with SMOTE, we ensured robust and reliable
predictions. Compared to previous studies, our approach
addresses the key limitations of dataset imbalance, feature

https://doi.org/10.25303/2010rjbt2550261

resulting in a more scalable and practical solution for clinical
applications?®.

Despite these advancements, several challenges remain. One
key limitation is the restricted dataset size, as expanding the
dataset with geographically diverse samples would enhance
model generalizability. Additionally, explainability remains
a challenge, as XGBoost operates as a black-box model,
making it difficult for healthcare professionals to interpret
its decisions. Future research should focus on integrating
Explainable Al (XAIl) methods such as SHAP or LIME to
improve interpretability and clinician trust.

Another crucial direction is hybrid model development,
where deep learning architectures like CNNs or transformer-
based models can be integrated with traditional machine
learning to capture more complex patterns. Deployment in
real-time clinical settings is a major step forward, with
efforts needed to integrate our model with electronic health
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records (EHRs), allowing seamless and automated resistance
prediction for physicians®. Moreover, continuous model
retraining with updated resistance patterns is essential to
maintain long-term accuracy and relevance, adapting to the
evolution of bacterial resistance.

The implications of this research extend beyond individual
patient care, as a robust predictive model can assist in
epidemiological  surveillance,  policy-making  and
antimicrobial ~ stewardship  programs. By reducing
unnecessary antibiotic prescriptions and improving targeted
treatment decisions, this approach has the potential to slow
down resistance emergence, ultimately contributing to better
public health outcomes. Moving forward, interdisciplinary
collaboration between machine learning researchers,
microbiologists and clinicians will be critical to ensure the
practical applicability of this model, bridging the gap
between computational advancements and real-world
healthcare needs.
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